
1

Cost optimization and performance control in the hybrid

multi-cloud environment

Boris Zibitsker, PhD,

BEZNext, Chicago, IL

Alex Lupersolsky, PhD,

BEZNext, Chicago, IL

ABSTRACT

Escalating cloud cost and unstable performance is a typical

challenge for any organization. It is especially related to

deployment of new Generative AI (GenAI) applications in a

hybrid multi-cloud world, which projected to become a

nearly twenty trillion dollars market by 2030.

This paper introduces a novel systems approach to
optimizing cost, controlling performance, and improving
FinOps decision-making through automated observability,
advanced queueing network modeling, and gradient
optimization.

Observability automation narrows the scope of the tuning
efforts by focusing on the most resource-consuming and
credit use applications, applications with the highest rate of
performance and cost anomalies, applications with the
highest frequency of failed queries, and applications with the
highest volume of data spilled to local and remote storage.

Modeling and optimization determine the minimal
configurations, resource allocation, workload management,

and budgets needed to meet Service Level Goals (SLGs) for
all business applications running on different cloud data
platforms in the Hybrid Multi-Cloud environment.
Modeling and optimization evaluate options and set cost and
performance expectations for proposed changes.

Actual performance and cost compared with expected to
organize a closed loop performance and cost control and
mitigate risks of unexpected financial and performance
outcomes.

Presented case studies illustrate the value of our technology
in optimizing application costs and controlling performance
for a wide range of projects, such as sizing new applications
before deployment to the cloud, appropriate cloud platform
selection, optimizing cloud migration decisions, and
organizing dynamic capacity management applications in
the Hybrid Multi-Cloud environment.

We demonstrated a high accuracy of our predictions. The

difference between measured and predicted cost is within
10%.

CCS CONCEPTS
Hybrid Multi-Cloud; Cost optimization; Performance
control; Observability; Modeling; Gradient optimization.

KEYWORDS
Hybrid multi-cloud, cost optimization, performance
control, Generative AI, Hybrid Multi-Cloud, FinOps,

observability, modeling, closed-loop feedback control,
gradient optimization.

ACM Reference Format:
Boris Zibitsker and Alex Lupersolsky. 2025. Cost
optimization and performance control in the hybrid multi-
cloud environment. In Proceedings of the 2025 ACM/SPEC
International Conference on Performance Engineering

(ICPE '25), May 7–11, 2025, Toronto, Canada.

Introduction

Motivation for this work

Organizations running business applications in the cloud
face dual challenges: how to reduce cost and maintain
consistent performance. Rising volume of data, increasing
number of users, migrations applications to the cloud and

deployment new GenAI applications often dramatically
increase the costs and affect performance. Critical decisions
- such as selecting cloud platforms, cloud migration,

proactively managing Hybrid Multi-Cloud environments

and sizing new applications before deployment - must be
optimized to minimize budget overruns and avoid
performance inconsistencies.

A related work

FinOps methodology and technology is widely used to

optimize cost by organizing observability, modeling and
control [1]. Storment and Fuller provide a detailed overview
of the FinOps principles. They emphasize the importance of
continuous observability and feedback loops for cost and
performance [15].

FinOps implementation has limitations and challenges. It

includes complexity in implementing and managing FinOps

in the hybrid multi-cloud environments, and complexity in

organizing monitoring and optimization. Inconsistent

metrics generated by cloud providers make unified

observability across multi-cloud environments complex.

Current FinOps observability does not use the system
approach and lack automation. Proposed recommendations
do not include cost-performance expectations and do not
allow customers to check if implemented recommendations
were successful. [2].

Articles [3,4,5,6] offer a detailed framework for managing
cloud costs in hybrid environments, focusing on three stages:
Inform (visibility), Optimize (cost-saving opportunities),
and Operate (continuous adjustment and automation). They

2

also emphasize the role of accountability and real-time
insights for optimizing cloud spend. FinOps limitations
reported there pose risks by failing to determine the
minimum resource requirements, workload management,
and budget needed to meet the SLGs of diverse applications

across the Hybrid Multi-Cloud environment. The
technologies described in these papers determine cost and
performance anomalies and root causes, but do not show the
related queries, the most critical and costly queries
consuming most of the resources, queries having the largest
amount of failures, and queries spilling the large volume of
data to remote and local storage. Several tools provide tuning
recommendations, but do not estimate the expected impact

of proposed changes on cost and performance.

Modeling and simulation approaches presented in [16]

provide definitions and metrics for elasticity in cloud

environments and present a conceptual model for evaluating

elastic resource provisioning.

Applying modeling and simulation to optimize resource

allocation and scheduling in the Hybrid Multi-Cloud

environment described in [17]. They propose a predictive

model using time-series forecasting and reinforcement

learning to allocate resources across multiple clouds. It

demonstrates how ML can optimize real-time analytics

pipelines, improving both latency and cost efficiency.

Survey [18] presents techniques for workload orchestration

in hybrid clouds, covering real-time vs. batch workloads,

cost vs. performance objectives, and vendor lock-in

considerations.

Models described in these papers help to evaluate different

options, but they are limited in evaluation of the combined

impact of the configuration and workload management

changes on cost in the Hybrid Multi-Cloud environment with

mixed workloads having different profiles and SLGs.

Several papers like [19] discuss the application of

performance modeling for query and database tuning. They

leverage deep reinforcement learning to automatically adjust

caching, partitioning, and indexing parameters for

distributed SQL engines. [20] proposes a learned cost model

integrated into a cloud-based query optimizer, adapting to

resource heterogeneity and changing data characteristics. It

Illustrates that data-driven models can significantly improve

query planning in dynamic cloud environments, reducing

query runtimes and cost. The approach described focuses on

enhancement of DBMS optimizers but has a limited

application for tuning queries and databases in customers’

cloud environments.

Increasing number of papers illustrate a growing emphasis

on machine learning - particularly reinforcement learning -

and multi-objective optimization for cloud DB tuning,

resource allocation, and workload management. As hybrid

and multi-cloud adoption increases, novel cost and

performance models are emerging to handle the complexity

of distributed resources, diverse pricing schemes, and real-

time workload fluctuations.

Multi-Objective Optimization recognizes that trade-offs

among cost, response time, energy efficiency, carbon

footprint, and fault tolerance as additional objectives are

essential [21]. Evolutionary algorithms or Pareto-based

methods are frequently applied. Beyond cost and

performance, they include energy efficiency, carbon

footprint, or fault tolerance as additional objectives.

We currently focus on cost optimization and performance

control, but we provide an option to take into consideration

the estimated electrical power consumption and carbon

footprint of individual applications on different cloud data

platforms [22].

Paper [23] proposes applying Multi-Cloud Resource

Management and Orchestration. It introduces a dynamic

data-movement algorithm using a cost-performance model

that forecasts future query patterns and determines whether

on-prem or cloud storage is more economical given expected

performance needs. This paper focuses on data movement.

With the introduction of the Open Table Format customers

are concerned with where to run applications rather where to

place data.

Many other research and industry papers underscore the
current limitations in applying observability automation and
incorporating modeling to optimize cost and control
performance in the complex Hybrid Multi-Cloud AI world.

1. The novelty and superiority of our

approach

In this paper, we present our novel holistic approach based
on applying SLGs for optimizing application costs and
controlling performance in the complex Hybrid Multi-Cloud
AI world.

We automate the observability. Our agents continuously
collect performance, resource usage, cost and data usage
data from cloud data platforms logs. Measurement data
aggregated and used for workload characterization and
performance and cost analysis.

We leverage AI and machine learning to identify
performance, resource utilization and cost anomalies and
seasonal peaks, and recommend cost-saving measures. We

detect critical queries using most of resources, having the
largest number of failures and spilling the largest volume of
data to local and remote storage. It narrows the scope of
tuning efforts by focusing on the most critical applications,
queries, tables, and databases.

Then we use modeling and gradient optimization to find the
minimum configuration, resource allocation and workload
management changes needed to meet business performance

SLG for all applications with the lowest cost and predict
the expected cost and performance metrics’ values.

It allows us to organize a closed-loop cost optimization and
performance feedback control for all business applications
in a Hybrid Multi-Cloud AI environment.

Our methodology and proven technology help to reduce
uncertainty and the risk of financial and performance

3

surprises during all phases of the journey to the cloud,
starting with selecting the appropriate cloud data platform,
optimizing cloud migration decisions, optimizing dynamic
capacity management in the Hybrid Multi-Cloud
environment, and sizing new applications before

deployment in the cloud.

2. Observability Automation and Dynamic

Capacity Management

Our methodology is implemented for AWS, GCP, and Azure

cloud service providers and Snowflake, Vantage Cloud,

Databricks, BigQuery, and Synapse cloud data platforms.

In this paper, we use Snowflake on AWS as an example to

demonstrate how automating observability and applying

advanced modeling techniques optimize cost and organize

performance control.

Through automated data collection and workload

characterization, we generate hourly performance, resource

utilization, data usage, and cost profiles for each application.

Observability captures changes in configuration and

workload management parameters. By automating

observability processes, we provide important insights into

each application's resource demand and usage patterns,

which are essential for optimizing resource allocation and

workload management in a complex hybrid multi-cloud

environment.

We will review several examples illustrating how

observability results are used to optimize tuning and

dynamic capacity management:

1. Resource Demand Patterns: Automated observability
helps track hourly, daily, and other seasonal patterns

(Figure 1) in resource demand, enabling proactive
adjustments to server capacity. For example, high-
traffic periods may require additional virtual
warehouses or increased memory allocation to prevent
latency issues and meet SLGs.

2. Performance Bottleneck Identification:
Observability data allows for the early detection of
performance bottlenecks, often caused by workload

spikes, query concurrency, or suboptimal
configurations. By identifying the applications with the
highest consumption or failure rates, targeted
adjustments can be made to configuration and workload
distribution, aligning resources with actual usage
demands.

3. Spillage Monitoring and Management: One of the
key indicators captured is data spillage—when
allocated memory is insufficient, causing overflow to

local or remote storage. Observability data reveals the
volume of spillage, which defines memory allocation
adjustments or storage configuration enhancements to
minimize performance impacts and control associated
costs.

4. Real-Time Tuning Opportunities: Automated
observability also provides real-time insights for tuning

efforts. By continuously profiling high-cost queries and
those causing the most frequent anomalies are
identified as tuning candidates. Tuning efforts are then
focused on these critical queries to improve efficiency
and cost-effectiveness.

Figure 1. Example of seasonality in credit use by one of the

business applications.

These observability-driven insights allow for the

organization of dynamic capacity management, reducing the

likelihood of unexpected costs or performance degradations.

By continuously adjusting capacity based on real-time usage

patterns, we establish a foundation for effective, adaptive

resource management in complex hybrid multi-cloud

environments.

2.1. Focus on Tuning Queries Using the Largest

Number of Credits

Our approach begins by identifying the applications with the

highest cost on each cloud data platform. Then, we narrow

our focus to the critical queries within these applications,

which have the longest execution times, as prime candidates

for tuning.

Table 1: Credit usage by top 10 Snowflake applications during

the last month

This trend is projected to continue, with substantial cost

increases anticipated in the coming year. The top ten

business applications in Table 1, account for over 70% of

total credit usage, indicating a concentrated area for cost

optimization.

The observability data further reveals the monthly

distribution of credit usage across different virtual

warehouses, providing insights into specific performance

bottlenecks. Table 2 captures the hash values and

4

performance statistics for the top 30 queries, which are

prioritized for analysis and tuning based on execution time

and credit usage.

Table 2: Top 30 queries by hash values with highest execution

times (candidates for tuning)

Database administrators (DBAs) can utilize various tools to

analyze access paths and identify specific tuning options,

allowing for a more targeted and efficient tuning process. By

optimizing these high-cost queries, organizations reduce

overall credit usage and improve performance for key

applications, directly impacting the scalability and

efficiency of their cloud data platforms.

We also automatically segregate queries into simple,

medium, and complex categories - each with distinct cost

and performance profiles.

For each group we determine the average response time.
Response time for each group is used as SLG like:

• Small Group: 8.23 seconds

• Medium Group: 20.84 seconds

• Complex Group: 74.97 seconds

Observability results indicate that simple queries tend to

cause the most spillage to local storage, while complex

queries predominantly spill data to remote storage. These

spillage patterns are factored into our modeling to determine

each query group's optimal configuration and budget

allocation. By doing so, we ensure that SLGs are met

continuously across varying times and days of the month.

Using these data-driven insights, we can proactively allocate
resources based on the specific service demands of each
query group. This approach helps optimize capacity while
managing costs, as tuning efforts are concentrated on the
queries that most heavily influence performance and
expenditure.

Focusing on the most resource and credit use applications

and determining tuning recommendations for them

increases the effectiveness of the cost optimization and

performance control and complex hybrid multi-cloud

environment supporting hundreds of applications on

different cloud data platforms.

2.2. Focus on tuning queries causing frequent and

severe cost and performance anomalies

Machine learning (ML) models detect application

performance and cost anomalies, flagging applications

where actual metrics deviate significantly from predicted

values (Figure 2).

Figure 2: Frequency and severity of applications performance and

cost anomalies

We analyze each detected anomaly's root causes, identifying

critical SQL statements and the specific database tables

involved. This analysis allows us to understand the

underlying factors driving the anomaly, such as inefficient

query patterns or suboptimal resource allocation, which can

then be prioritized for tuning.

By continuously monitoring application performance and

costs, we can pinpoint the queries responsible for

performance degradation and cost increases.

Another contributor to performance issues and cost

escalation in cloud environments is data spilling. Table 3

shows an example of 10 top queries for one of the

applications with the largest number of MB spilled to the

local storage.

2.3 Focus on Tuning Queries Generating the

Largest Data Spill to Local and Remote Storage

Factors Affecting Data Spillage

Data spilling to local or remote storage typically results from

memory limitations during query processing. When a

query's allocated memory cannot accommodate all

intermediate data, the system spills it to local storage.

However, if local storage is insufficient or under high load,

the system further spills to remote storage to maintain query

completion. Remote storage is a flexible, cost-effective

extension, enabling complex queries to proceed even when

memory resources are stretched.

Joins and Aggregations: Complex queries with multiple
joins or aggregations often generate large intermediate
results that surpass available memory. In these cases, the

ENVIRONMENT APPLICATION CLASSIFICATION DATABASE HASHVALUE EXECUTIONS

COUNT

SUM

ELAPSED

TIME SEC

AVERAGE

ELAPSED

TIME SEC

SUM

EXECUTION

TIME SEC

AVERAGE

EXECUTION

TIME SEC

SUM MB

PROCESSED

AVERAGE MB

PROCESSED

P01 EDL LOAD P01_EDL a10b9ba530daf2ae3b2884679932883b 15 1,457,462 97,164 1,457,400 97,160 21,913,782 1,460,919

P01 EDL LOAD P01_EDL fa44f1ce4d1c24327b5106346d96c42a 15 1,413,483 94,232 1,413,406 94,227 21,902,721 1,460,181

P01 COBWHTSPC LOAD P01_COBWHTSPC 0c8b97d6ac38433810c22fb328f5227b 3 518,403 172,801 518,397 172,799 8,946 2,982

P01 EDL LOAD P01_EDL 6abe18fb17cf3ed65c42b234499cf57b 21 402,538 19,168 402,502 19,167 95,550,978 4,550,047

P01 DX_NCCT LOAD P01_DX 52470da7dcb0637061b8cc6e54e6b078 9 228,436 25,382 228,434 25,382 15,413 1,713

P01 VBC_INB LOAD P01_VBC 13c3476270759437ab40048bac2094c3 4 173,316 43,329 173,314 43,329 6,264 1,566

P01 DADM LOAD P01_DADM c4fd2f41d5a508c785b69981d6305efc 1 172,802 172,802 172,796 172,796 41,567 41,567

P01 PRDA LOAD P01_PRDA db4508ea5a03b2625b6e40594f5fa4aa 4 85,936 21,484 85,913 21,478 3,655,056 913,764

P01 CQDM LOAD P01_CQDM e599e9cafe23ec72e74588d5544c41b2 2 77,890 38,945 77,889 38,945 98,632 49,316

P01 EDM_V3 LOAD P01_EDM_V3 f86096fe3d5583993671d146a11c5ab9 1 76,873 76,873 76,873 76,873 0 0

P01 EDL LOAD P01_EDL e596bae649b6649b6c3602d939a7d09a 1 72,863 72,863 72,863 72,863 126,563 126,563

P01 CDA CD P01_CDA f749fdbbfb15c9d5a213a0b3875bc6db 1 65,599 65,599 65,599 65,599 0 0

P01 HEDIS LOAD P01_HEDIS 343597c7edd80c26b49ea690f63b0947 3 65,190 21,730 65,188 21,729 0 0

P01 EDM_V3 LOAD P01_EDM_V3 06935534d8deaf57486b5df50815ddf0 2 64,166 32,083 64,162 32,081 2,111,648 1,055,824

P01 CDA CD P01_CDA 9800568b9e2d6659df3699ea1fbaed5f 1 63,456 63,456 63,456 63,456 0 0

P01 CQDM LOAD P01_CQDM c2ffb5aea33e24e80822116b6421cc0d 1 62,482 62,482 62,481 62,481 183,991,416 183,991,416

P01 VBSR LOAD P01_VBSR e84c3b115337c175029ca791bb787b4f 1 60,560 60,560 60,560 60,560 365,734 365,734

P01 PIXACO LOAD P01_PIXACO 98224147b51c2a97f00544110453665d 2 59,189 29,595 59,181 29,590 3,223,870 1,611,935

P01 VBC_INB LOAD P01_VBC 7887d4660e7afd1d5d0465f9be6216d7 1 58,516 58,516 58,514 58,514 1,764,412 1,764,412

P01 UWRATE LOAD P01_UWRATE c0c230aa0f86d9282a454039b1af6da1 1 58,495 58,495 58,494 58,494 81,051 81,051

P01 CRCDA CD P01_CDA 89f52c15f380799ed6d2849a6bdaf0a5 2 57,441 28,720 57,440 28,720 0 0

P01 CDA CD P01_CDA 266884d5f8edb31b4aea99ffd3df377e 1 56,586 56,586 56,585 56,585 0 0

P01 EDL LOAD P01_EDL abc78a0552b1f7131c43805e55b9bd34 1 55,920 55,920 55,920 55,920 61,112 61,112

P01 EDL LOAD P01_EDL 83405fb1cb03b5120e890350283ae045 1 54,789 54,789 54,789 54,789 59,858 59,858

P01 PT LOAD P01_PT 71e3b92972cee4f60c1d61834b98a6c3 1 53,794 53,794 53,794 53,794 269,340 269,340

P01 CDA CD P01_CDA eb1107637c5615c444069cd106bb2f2e 1 53,740 53,740 53,740 53,740 0 0

P01 CDA CD P01_CDA 16058501fb6dfebe9b5a2d9e76611b7b 1 53,398 53,398 53,398 53,398 0 0

P01 CDA CD P01_CDA d119fec6692aff0551128a5f197773b0 1 51,995 51,995 51,994 51,994 8,734,360 8,734,360

P01 CREM LOAD P01_CREM 028477f962f94b588b4ff1d5583a2108 1 51,742 51,742 51,741 51,741 185,894 185,894

5

system offloads excess data to remote storage to continue
processing without interruption.

Table 3. An example of 10 queries for one of the applications

with the largest number of MB spilled to the local storage

High Query Concurrency: When multiple queries run

concurrently during peak usage, memory and local storage
demands increase sharply. Spilling to remote storage helps.

Skewed Data Distribution: In distributed systems, data
partitions across multiple nodes can sometimes become
unevenly distributed or "skewed." This condition can result
in some nodes handling disproportionately larger data
volumes, exhausting local storage and leading to higher spill
rates on these nodes.

Insights from Observability Data

Analyzing observability data provides valuable insights into

spillage patterns, which often vary by time of day and

workload. In this example the highest data scan volumes

tend to occur during nighttime operations (Figure 3). While

compute clusters allocations are minimal at night (Figure 4)

and credit usage is at its lowest (Figure 5), this period also

shows the highest data spillage to local storage (Figure 6),

with average elapsed times exceeding the SLG threshold of

75 seconds (Figure 7).

Resource Requirements to Meet SLGs

Significant resources may be required to meet SLGs,

especially for complex query groups with an SLG of 75

seconds. For example, meeting this SLG often demands up

to 3,500 GB of RAM and 218 nodes (typically organized as

seven 2XL clusters), as depicted in Figure 8.

Proactive Spillage Management

Excessive spillage is a critical indicator of resource

constraints or suboptimal query design, leading to degraded

performance and increased costs. By monitoring spillage

data, especially for large or complex queries, our

observability process enables targeted interventions, such as:

• Memory Optimization: Adjusting memory
allocations to better match query requirements.

• Resource Allocation Adjustments: Fine-tuning
resource distributions to accommodate high-demand
periods and complex workloads.

• Query Simplification: Breaking down complex
queries into smaller tasks, reducing the likelihood of
spillage.

Proactive tuning of queries with high spillage rates thus

enhances system performance, reduces query failure rates,

and achieves cost savings by optimizing resource utilization.

Figure 3: High data scan volume per query during nighttime

Figure 4: Minimal cluster allocations at night

Figure 5. Low credit usage during nighttime, with peaks during

daytime and late evening

0.0

50,000.0

100,000.0

150,000.0

0 5 7 9 11 13 15 17 19 21 23

Sc
an

n
ed

 M
B

/Q
u

er
y

Hours

Average MB Scanned

6

Figure 6: Maximum data spillage to local storage at night

Figure 7: SLG breaches due to excessive nighttime spillage

Figure 8. To meet SLG for the complex group (75 sec), 3,500 GB

of RAM and 218 nodes (seven 2XL clusters) are needed

2.4 Tuning Queries with the Largest Number of

Failures

We analyze SQL query failures for each application by

examining the frequency of errors, error codes, error

messages SQL hash values, and the associated lost execution

time and credits. Additional parameters such as data

processed and data spilled into local and remote storage,

elapsed time, execution time, wait time, and throughput per

application are also evaluated. By aggregating these metrics,

we gain insights into how the failures contribute to resource

waste and credit loss across applications.

Table 4 lists hash values and error codes for ten

representative queries with the longest failed execution

times, which guide DBAs in tuning these queries to reduce

failures.

By targeting high-failure queries, we enhance overall system

efficiency, reduce unnecessary cost expenditures, and

improve application reliability. This tuning process

mitigates financial waste and optimizes the allocation of

compute and storage resources, further aligning performance

with SLGs.

Table 4. Hash values of the critical queries with the largest failed execution time provide value for application developers and DBAs

2.5 Value of Observability Automation

Automating observability in cloud environments provides

substantial value for optimizing cost and performance. We

automate data collection across business applications on

multiple cloud data platforms, perform workload

characterization and build detailed performance, resource

utilization, data usage, and cost profiles on an hourly basis.

We also automatically detect application performance and

cost anomalies and generate periodic reports.

Monthly analyses identify seasonal trends, patterns in

resource usage, and critical SQL queries. Applying machine

learning techniques, including regression analysis,

clustering, and classification, allows us to uncover

correlations among various factors, highlighting the

SLG = 75 sec

0.0

50,000.0

100,000.0

150,000.0

200,000.0

0 5 7 9 11 13 15 17 19 21 23

Lo
ca

l S
ill

ed
 M

B
/Q

u
er

y

Hours

Average MB spilled to local storage

7

applications, queries, and databases that substantially impact

performance and costs.

In addition, observability automation enables us to

accurately assess the minimum memory requirements

necessary to prevent excessive data spillage into local and

remote storage. By adjusting memory allocations based on

observed usage patterns, we can reduce the negative impacts

of spillage on both performance and cost.

Overall, automating observability significantly enhances the

effectiveness of tuning efforts by focusing on critical

performance and cost issues within complex hybrid multi-

cloud environments that host numerous business workloads.

By understanding the variations in resource demands,

organizations can optimize resource allocation throughout

the day, achieving improved cost efficiency and alignment

with SLGs. This proactive approach allows for more

efficient performance management and cost control,

minimizing unexpected financial and operational risks.

3. Modeling and Optimization

Our approach employs universal queueing network models

(QNM) and gradient optimization techniques applicable to

performance evaluation across different cloud data

platforms and configurations in a hybrid multi-cloud

environment. This methodology is designed to identify the

minimal configurations, tuning strategies, workload

management adjustments, and budgets necessary to meet

business SLGs for applications across all platforms. Using

observability data, we continuously create and calibrate

hourly models used to evaluate various configuration and

resource allocation scenarios, providing insights that balance

cost and performance control.

The results of our modeling process establish clear

performance and cost expectations, enabling the

implementation of a continuous, closed-loop feedback

control system. This system verifies the outcomes of

recommended configurations and enables ongoing

optimization by continuously comparing actual performance

and costs against predicted benchmarks.

We evaluated multiple modeling approaches and algorithms,

including simulation modeling, generative AI, and queueing

network models. While simulation models offer high

accuracy, they are time-expensive to build and apply.

Generative AI models, although promising, require

extensive training on diverse measurement data that may not

encompass all scenarios. Therefore, we selected queueing

network models combined with gradient optimization to

achieve the desired accuracy and efficiency for continuous

SLG compliance across applications.

3.1 Queueing Network Model

Our approach is distinct in that it integrates analytical QNMs

[7] into each step of gradient optimization, allowing us to

find the minimum configuration, workload management and

cost needed to meet SLGs for each workload.

To model the hybrid multi-cloud architecture effectively, we

developed a multi-tier, multi-server QNM, where each

server is represented by a separate QNM. The output from

one server serves as the input to another in a cascading

manner, continuing iteratively until the predicted

performance metrics stabilize.

Each server’s QNM comprises multiple nodes representing

hardware resources, such as compute nodes, storage arrays,

and interconnecting channels. Workload requests enter these

queues, waiting for service according to the configuration at

each node.

When moving workloads between platforms, we convert

CPU service time and I/O operation counts to equivalent

values on the target platform, accounting for differences in

database management system (DBMS) optimizer efficiency,

server software, and CPU performance. These conversion

coefficients are derived from TPC-DS and BEZNext’s

customized benchmark tests. [24]

We adapted the Mean Value Analysis (MVA) algorithm [8]

to model workload management parameters such as

priorities, concurrency levels, and resource utilization limits.

The iterative, approximate MVA algorithm allowing queue

sizes to converge quickly to steady-state values is a more

efficient approach for complex multi-chain queuing

networks, where workloads share resources and requests are

processed concurrently. This approach accommodates

various service time distributions for processor-sharing

nodes and exponential distributions for FIFO queues,

providing a practical approximation of real-world

computing processes.

The QNM is calibrated to maintain accuracy by comparing

predicted and actual measured response times and adjusting

model parameters accordingly.

The optimization process aims to identify the server

configuration that minimizes cost while satisfying SLGs.

Our two-step optimization algorithm includes:

1. Redistribution of Existing Resources: In this first

step, we redistribute resources among workloads by
setting workload priorities based on each workload’s
average response time relative to SLGs. This approach
maximizes resource use within the existing
configuration.

2. Resource Allocation Adjustment: If resource
redistribution alone cannot meet SLGs, the second step
uses gradient optimization to estimate the additional

resources required. Conversely, if workloads exceed
SLGs, the algorithm calculates how much resources can
be freed, reducing costs without compromising SLG
adherence.

8

3.2 Gradient Optimization

Our optimization algorithm [9] begins by evaluating the

current or proposed hardware configuration. The QNM

assesses server performance metrics, focusing on the

average request response time and its components across

server resources for each workload. These response times

are then compared with the SLGs to determine the necessary

configuration adjustments. The ratio of predicted response

time to the corresponding SLG indicates the configuration

change’s amplitude, while response time components

weights provide the direction of optimization. The

optimization process is illustrated on Figure 9.

Figure 9: BEZNext Queueing Network Modeling and Gradient

Optimization Process

The following steps outline the observability, modeling and

optimization process:

1. Build Workload Profiles: Compile detailed profiles
for each business workload, capturing key metrics,
including cost, performance, resource utilization, and

data usage for each interval.

2. Select Representative Time Intervals: Choose time
intervals that reflect typical workload behaviors and
patterns, ensuring that the model captures peak and off-
peak conditions.

3. Modeling and Optimization: Use QNM and gradient
optimization to determine the minimum configuration
and workload management adjustments needed to meet

SLGs for each workload at different times of day and
throughout the year.

4. Budget Calculation: Estimate costs for the optimized
configurations using specific cloud provider pricing
models, ensuring budget alignment with performance
requirements.

5. Provide Performance and Cost Expectations:
Deliver realistic expectations for performance, resource
utilization, and cost based on the optimized

configurations, enabling proactive cost and
performance management.

6. Verify results: Compare measurement cost and
performance with expected

This process creates a robust framework for modeling and

optimization, allowing organizations to achieve cost-

effective performance control in complex hybrid multi-

cloud environments. By continuously refining

configurations and resource allocations, this approach

supports ongoing FinOps decision optimization, aligning

operational costs with performance goals while

accommodating fluctuations in workload demands.

3.3 Optimization scenarios

3.3.1 Determine the minimum configuration and budget

needed to meet SLGs by each business workload

It includes finding the node types, number of nodes, storage
configuration, and memory size required during different
hours of the day, days of the month, and months of the year.
The results help recommend the most appropriate cloud data

platform based on performance and cost considerations [10].

Figure 10 shows the predicted change of the application’s
response time components as a result of reducing spilling by
30%. Predicted response time components help to determine
the current and potential performance bottlenecks for each
application on each of the cloud data platforms. They also
serve as a basis for evaluating options and determining the
minimum configuration and budget needed to continuously

meet SGs for each workload.

Figure 10. Predicted response time components

illustrating the impact of reducing spilling by 30%

Modeling and optimization are used to address various

tactical and strategic challenges. For example, during

capacity management and budget planning for next year,

modeling helps predict the minimum configuration needed

to meet SLGs for the expected increase in the number of

users by 12% per year and data growth of 10% per year.

As shown in Figures 11 and 12, modeling and optimization

predict when and what configuration changes will be

required to continuously meet SLG with the lowest cost. As

the Snowflake scale-out limit (10 clusters) is reached for

2XL VW, we recommend scaling up to 3XL and then scaling

out.

9

Figure 11. The predicted minimum configuration will be sufficient

to provide the response time below SLG

Figure 12. Predicted size of the configuration changes needed to

meet SLGs

3.3.2 Cloud Migration Decision Optimization

Models can be used to evaluate and optimize cloud
migration decisions [11,12]. For example, the data load on-
premises takes nine days. The objective is to determine the
minimum Snowflake configuration needed to finish the
load within three days.

First, we analyze observability results on premises. Figure

15 shows the differences in CPU utilization during four
phases of loading data during 9 days. The challenge is to
determine the minimum configuration, including scaling
rules needed to parallelize data load and finish it 3 days.

Figure 13. Change in CPU usage during four phases of data

loading on-premises before migration to the cloud.

Table 5. Predicted minimum configuration and budget needed to

reduce load time to 3 days after migration to the cloud.

For each phase of the data load, modeling results presented

in Table 5 determine the minimum Snowflake configuration

needed to reduce load time from nine to three days.

After migrating the data load workload to the cloud, we

compared the actual, measured performance and cost with

the expected.

Cost verification

The number of credits used during 8 months after migrating

the load workload to the cloud is within 10% of expected

(Figure 14). Exception is the third month when the load

process was performed twice.

Figure 14. The actual cost is within 10% of expected

Performance verification

Figure 15. We expected that the data load will take 3 days, but in

reality, it takes almost 4 days

The cost was predicted accurately in this example, but

additional tuning is needed to meet performance SLGs

continuously (Figure 15).

3.3.3 New application sizing

Measurement data collected during the testing of the new
applications (Figure 16) are used by modeling and

optimization to determine the minimum configuration and
budget needed to meet the SLG of new applications before
deployment in the cloud [13].

10

Figure 16. Use measurement data collected during the testing of

a new application
The model predicts the impact of expected workloads and
data growth, identifying the changes required over the next
12 months (Figure 17).

Figure 17. The predicted time of change and size of the

Snowflake configuration are needed to meet SLG for the new

application after deployment into the cloud.

3.3.4 Building realistic budget

Modeling and optimization determine the minimum
configuration and budget needed to meet SLGs for all
existing production applications, applications which are
planned to migrate to the cloud and new applications
planned for deployment. Figure 18 shows an example of the
budget based on determining the minimum configuration
and workload management and tuning actions needed to

meet SLGs for all applications.

Modeling results set realistic cost and performance
expectations and enable organizing closed loop control.

Figure 18 An example of a typical challenge while planning next

year budget to meet SLGs for growing business applications and

migrating applications from on-premises to the cloud, and for

newly deployed cloud-based applications.

4. Performance and Cost Control: Closed-

Loop Feedback System

Our methodology establishes a closed-loop performance and

cost control system by comparing actual cost and

performance metrics with predicted values. This feedback

loop continuously monitors outcomes to ensure SLGs are

met across applications (Figure 19). By refining

configurations based on real-time performance data, this

system reduces the risks of unexpected costs and

performance issues, maintaining alignment with SLGs.

Figure 19: Organization of the closed-loop cost optimization and

performance control.

The closed-loop process verifies the effectiveness of

recommended changes and supports ongoing optimization.

Organizations can improve resource allocation and reduce

costs across hybrid multi-cloud environments by applying

continuous modeling and optimization.

5. Summary

In this paper we introduced a comprehensive methodology
and systems approach for optimizing cost and performance
control of applications in the Hybrid Multi-Cloud
environment.

Observability and some of the modeling and optimization

functions are automated. BEZNext software can be used as
SaaS or installed on customer private cloud.

The main challenge of applying our technology is an
availability of metrics characterizing applications and
queries resource usage. We overcome this challenge by
automatic model calibration.

The presented case studies illustrate the value and benefits
of our approach to optimizing application costs and

controlling performance in complex hybrid multi-cloud
environments. Cost savings and performance control are
achieved by automating the observability process and
focusing tuning efforts on the most resource-intensive and
cost-consuming applications, queries, and databases.

This includes targeting queries and applications with the
largest volume of data spilled to local and remote storage and
those with the greatest time lost due to query failures.

We apply queueing network models and gradient

optimization to evaluate options and optimize strategic cloud
decisions by determining the minimum configuration,
workload management, resource allocation, and budget
needed to meet SLGs cost-effectively for all applications on
all cloud data platforms.

Finally, we provide cost and performance expectations based
on the modeling results. It facilitates closed-loop feedback
cost optimization and performance control, reducing the risk

of performance surprises in hybrid multi-cloud
environments.

The presented case studies cover the benefits of our solutions
for a wide range of projects, starting with the sizing of new

11

applications before deployment to the cloud, appropriate
cloud platform selection, optimizing cloud migration
decisions, and organizing dynamic capacity management
applications in the Hybrid Multi-Cloud environment.

We demonstrated in our case study that the difference

between the measured and predicted costs is within 10%.

6. Future Work

The AI Hybrid Multi-Cloud world is expanding rapidly,
introducing new technologies, platforms, and countless
options. Cloud decisions must consider not only cost and
performance, but also storage options, the carbon footprint
across different platforms, and other relevant factors. As a

result, organizations face a complex multi- objective
optimization.

We will continue to prioritize resource investments based on
customer requirements and emerging technology trends.

In particular, we intend to enhance observability automation,
evaluation of the cloud storage options, improve cost and
performance recommendations and support multi- objective
optimization.

In addition, we plan to reengineer our software by deploying
specialized AI agents for data collection, workload
characterization, and continuous comparison of observed
and expected results.

We will also strengthen closed-loop feedback control.

Finally, we intend to expand and improve cost optimization
and performance control across new cloud data platforms.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of BEZNext
colleagues in the development of cost optimization and
performance control software.

REFERENCES
[1] FinOps Foundation. What is FinOps? https://www.finops.org

[2] Slingshot: https://www.capitalone.com/tech/cloud/introducing-

slingshot/

[3] "Cost Estimation of AI Workloads" by FinOps.org

[4] Top 20 FinOps tools to consider in 2024:

https://www.finout.io/blog/finops-tools-guide

[5] “Cloud Cost Optimization: A Comprehensive Review of

Strategies and Case Studies” (2023).

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4519171

[6] "FinOps for Cloud Cost Management":

https://www.ibm.com/think/topics/finops-cloud-cost-management

[7] L. Kleinrock. 1976. Computer Applications (1st ed.). Queueing

Systems, Vol 2. Wiley-Interscience, New York.

[8] M. Reiser, S. Lavenberg. 1980. Mean value analysis of closed

multichain queueing networks. J.ACM 27, 2 (April 1980), 313-

322. https://doi.org/10.1145/322186.322195

[9] Sebastian Ruder. 2016. An overview of gradient descent

optimization algorithms. arXiv preprint arXiv:1609.04747.

[10] B.Zibitsker and A. Lupersolsky. A new approach to cloud cost

optimization and performance control: https://bit.ly/4hwKU0b

[11] B. Zibitsker. "Which Platform is Best for your Cloud Data

Warehouse? https://www.beznext.com/wp-

content/uploads/2022/02/BEZNext-White-Paper-Which-Platform-

is-Best-for-your-Cloud-Data-Warehouse-2-17-2021.pdf

[12] B.Zibitsker and A. Lupersolsky. 2022. The Journey to the

Cloud-Hybrid multi-cloud. https://www.beznext.com/wp-

content/uploads/2022/02/220225-BEZNext-White-Paper.pdf

[13] B. Zibitsker. 2022. Cloud Performance and Financial

Governance Optimization (FinOps). Conference session. In CMG

Impact 2022.

[14] B. Zibitsker and Alex Podelko. ICPE 2020. Performance

Testing and Modeling for New Analytic Applications. Video. (21

May 2021). Retrieved November 16, 2023, from

https://youtu.be/dnTrMiIYR98?si=pzugRScwJEeODMpZ

[15] J.R. Storment & Mike Fuller, Cloud FinOps, O’Reilly Media,

2020

[16] Herbst, N. R., Kounev, S., Reussner, R. (2013). “Elasticity in

Cloud Computing: What It Is, and What It Is Not.”: 10th

International Conference on Autonomic Computing (ICAC ’13),

pp. 23-27,

https://www.usenix.org/system/files/conference/icac13/icac13_her

bst.pdf

[17] Wu, S., Li, J., & Kumar, S. (2021). “Machine Learning-based

Multi-cloud Resource Allocation for Real-time Big Data

Analytics.” IEEE Transactions on Parallel and Distributed Systems

[18] Singh, R. K., Gupta, P., & Alshamrani, S. (2023). “Workload-

aware Hybrid Cloud Orchestration: A Survey” Journal of Cloud

Computing.

[19] Fu, A., Li, R., & Chen, H. (2021). “Adaptive DB Tuning with

Deep Reinforcement Learning in Cloud-based Data Lakes”

Proceedings of the VLDB Endowment

[20] Sun, X., Jermaine, C., & Mozafari, B. (2022). “Autonomous

Query Optimization in the Cloud via Learned Cost Models.” ACM

SIGMOD Conference

[21] Zhang, L., Xu, M., & Buyya, R. (2021). “Evolutionary Multi-

Objective Optimization for Multi-Cloud Resource Scheduling.”

Journal of Parallel and Distributed Computing

[22] Predicting Cloud Data Platforms Carbon Footprint for Large

Data Warehouses: bit.ly/49cqq8I; bit.ly/3ScrAu4

[23] Li, X., Xu, W., Wang, G. (2022) “Adaptive Data Placement in

Hybrid Clouds: A Performance-Cost-Aware Approach” Future

Generation Computer Systems.

[24] Cloud benchmarks aren’t enough. The use of modeling to

address the limitations of benchmark tests: bit.ly/49cqq8I

https://www.capitalone.com/
https://www.finout.io/blog/finops-tools-guide
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4519171
https://www.ibm.com/think/topics/finops-cloud-cost-management
https://www.beznext.com/wp-content/uploads/2022/02/BEZNext-White-Paper-Which-Platform-is-Best-for-your-Cloud-Data-Warehouse-2-17-2021.pdf
https://www.beznext.com/wp-content/uploads/2022/02/BEZNext-White-Paper-Which-Platform-is-Best-for-your-Cloud-Data-Warehouse-2-17-2021.pdf
https://youtu.be/dnTrMiIYR98?si=pzugRScwJEeODMpZ
https://www.usenix.org/system/files/conference/icac13/icac13_herbst.pdf
https://www.usenix.org/system/files/conference/icac13/icac13_herbst.pdf
http://bit.ly/49cqq8I

