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ABSTRACT 

Escalating cloud cost and unstable performance is a typical 

challenge for any organization. It is especially related to 

deployment of new Generative AI (GenAI) applications in a 

hybrid multi-cloud world, which projected to become a 

nearly twenty trillion dollars market by 2030. 

This paper introduces a novel systems approach to 
optimizing cost, controlling performance, and improving 
FinOps decision-making through automated observability, 
advanced queueing network modeling, and gradient 
optimization.  

Observability automation narrows the scope of the tuning 
efforts by focusing on the most resource-consuming and 
credit use applications, applications with the highest rate of 
performance and cost anomalies, applications with the 
highest frequency of failed queries, and applications with the 
highest volume of data spilled to local and remote storage. 

Modeling and optimization determine the minimal 
configurations, resource allocation, workload management, 

and budgets needed to meet Service Level Goals (SLGs) for 
all business applications running on different cloud data 
platforms in the Hybrid Multi-Cloud environment.  
Modeling and optimization evaluate options and set cost and 
performance expectations for proposed changes. 

Actual performance and cost compared with expected to 
organize a closed loop performance and cost control and 
mitigate risks of unexpected financial and performance 
outcomes. 

Presented case studies illustrate the value of our technology 
in optimizing application costs and controlling performance 
for a wide range of projects, such as sizing new applications 
before deployment to the cloud, appropriate cloud platform 
selection, optimizing cloud migration decisions, and 
organizing dynamic capacity management applications in 
the Hybrid Multi-Cloud environment.  

We demonstrated a high accuracy of our predictions. The 

difference between measured and predicted cost is within 
10%.  
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Introduction 

Motivation for this work 

Organizations running business applications in the cloud 
face dual challenges: how to reduce cost and maintain 
consistent performance. Rising volume of data, increasing 
number of users, migrations applications to the cloud and 

deployment new GenAI applications often dramatically 
increase the costs and affect performance. Critical decisions 
- such as selecting cloud platforms, cloud migration, 

proactively managing Hybrid Multi-Cloud environments 

and sizing new applications before deployment - must be 
optimized to minimize budget overruns and avoid 
performance inconsistencies. 

A related work 

FinOps methodology and technology is widely used to 

optimize cost by organizing observability, modeling and 
control [1]. Storment and Fuller provide a detailed overview 
of the FinOps principles. They emphasize the importance of 
continuous observability and feedback loops for cost and 
performance [15]. 

FinOps implementation has limitations and challenges. It 

includes complexity in implementing and managing FinOps 

in the hybrid multi-cloud environments, and complexity in 

organizing monitoring and optimization. Inconsistent 

metrics generated by cloud providers make unified 

observability across multi-cloud environments complex. 

Current FinOps observability does not use the system 
approach and lack automation. Proposed recommendations 
do not include cost-performance expectations and do not 
allow customers to check if implemented recommendations 
were successful. [2]. 

Articles [3,4,5,6] offer a detailed framework for managing 
cloud costs in hybrid environments, focusing on three stages: 
Inform (visibility), Optimize (cost-saving opportunities), 
and Operate (continuous adjustment and automation). They 
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also emphasize the role of accountability and real-time 
insights for optimizing cloud spend. FinOps limitations 
reported there pose risks by failing to determine the 
minimum resource requirements, workload management, 
and budget needed to meet the SLGs of diverse applications 

across the Hybrid Multi-Cloud environment. The 
technologies described in these papers determine cost and 
performance anomalies and root causes, but do not show the 
related queries, the most critical and costly queries 
consuming most of the resources, queries having the largest 
amount of failures, and queries spilling the large volume of 
data to remote and local storage. Several tools provide tuning 
recommendations, but do not estimate the expected impact 

of proposed changes on cost and performance. 

Modeling and simulation approaches presented in [16] 

provide definitions and metrics for elasticity in cloud 

environments and present a conceptual model for evaluating 

elastic resource provisioning. 

Applying modeling and simulation to optimize resource 

allocation and scheduling in the Hybrid Multi-Cloud 

environment described in [17]. They propose a predictive 

model using time-series forecasting and reinforcement 

learning to allocate resources across multiple clouds. It 

demonstrates how ML can optimize real-time analytics 

pipelines, improving both latency and cost efficiency. 

Survey [18] presents techniques for workload orchestration 

in hybrid clouds, covering real-time vs. batch workloads, 

cost vs. performance objectives, and vendor lock-in 

considerations. 

Models described in these papers help to evaluate different 

options, but they are limited in evaluation of the combined 

impact of the configuration and workload management 

changes on cost in the Hybrid Multi-Cloud environment with 

mixed workloads having different profiles and SLGs. 

Several papers like [19] discuss the application of 

performance modeling for query and database tuning. They 

leverage deep reinforcement learning to automatically adjust 

caching, partitioning, and indexing parameters for 

distributed SQL engines. [20] proposes a learned cost model 

integrated into a cloud-based query optimizer, adapting to 

resource heterogeneity and changing data characteristics. It 

Illustrates that data-driven models can significantly improve 

query planning in dynamic cloud environments, reducing 

query runtimes and cost. The approach described focuses on 

enhancement of DBMS optimizers but has a limited 

application for tuning queries and databases in customers’ 

cloud environments. 

Increasing number of papers illustrate a growing emphasis 

on machine learning - particularly reinforcement learning - 

and multi-objective optimization for cloud DB tuning, 

resource allocation, and workload management. As hybrid 

and multi-cloud adoption increases, novel cost and 

performance models are emerging to handle the complexity 

of distributed resources, diverse pricing schemes, and real-

time workload fluctuations. 

Multi-Objective Optimization recognizes that trade-offs 

among cost, response time, energy efficiency, carbon 

footprint, and fault tolerance as additional objectives are 

essential [21]. Evolutionary algorithms or Pareto-based 

methods are frequently applied. Beyond cost and 

performance, they include energy efficiency, carbon 

footprint, or fault tolerance as additional objectives. 

We currently focus on cost optimization and performance 

control, but we provide an option to take into consideration 

the estimated electrical power consumption and carbon 

footprint of individual applications on different cloud data 

platforms [22]. 

Paper [23] proposes applying Multi-Cloud Resource 

Management and Orchestration. It introduces a dynamic 

data-movement algorithm using a cost-performance model 

that forecasts future query patterns and determines whether 

on-prem or cloud storage is more economical given expected 

performance needs. This paper focuses on data movement. 

With the introduction of the Open Table Format customers 

are concerned with where to run applications rather where to 

place data. 

Many other research and industry papers underscore the 
current limitations in applying observability automation and 
incorporating modeling to optimize cost and control 
performance in the complex Hybrid Multi-Cloud AI world. 

1. The novelty and superiority of our 

approach  

In this paper, we present our novel holistic approach based 
on applying SLGs for optimizing application costs and 
controlling performance in the complex Hybrid Multi-Cloud 
AI world.  

We automate the observability. Our agents continuously 
collect performance, resource usage, cost and data usage 
data from cloud data platforms logs. Measurement data 
aggregated and used for workload characterization and 
performance and cost analysis.  

We leverage AI and machine learning to identify 
performance, resource utilization and cost anomalies and 
seasonal peaks, and recommend cost-saving measures. We 

detect critical queries using most of resources, having the 
largest number of failures and spilling the largest volume of 
data to local and remote storage. It narrows the scope of 
tuning efforts by focusing on the most critical applications, 
queries, tables, and databases.  

Then we use modeling and gradient optimization to find the 
minimum configuration, resource allocation and workload 
management changes needed to meet business performance 

SLG for all applications with the lowest cost and predict 
the expected cost and performance metrics’ values. 

It allows us to organize a closed-loop cost optimization and 
performance feedback control for all business applications 
in a Hybrid Multi-Cloud AI environment. 

Our methodology and proven technology help to reduce 
uncertainty and the risk of financial and performance 
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surprises during all phases of the journey to the cloud, 
starting with selecting the appropriate cloud data platform, 
optimizing cloud migration decisions, optimizing dynamic 
capacity management in the Hybrid Multi-Cloud 
environment, and sizing new applications before 

deployment in the cloud.   

2. Observability Automation and Dynamic 

Capacity Management 

Our methodology is implemented for AWS, GCP, and Azure 

cloud service providers and Snowflake, Vantage Cloud, 

Databricks, BigQuery, and Synapse cloud data platforms. 

In this paper, we use Snowflake on AWS as an example to 

demonstrate how automating observability and applying 

advanced modeling techniques optimize cost and organize 

performance control. 

Through automated data collection and workload 

characterization, we generate hourly performance, resource 

utilization, data usage, and cost profiles for each application. 

Observability captures changes in configuration and 

workload management parameters. By automating 

observability processes, we provide important insights into 

each application's resource demand and usage patterns, 

which are essential for optimizing resource allocation and 

workload management in a complex hybrid multi-cloud 

environment. 

We will review several examples illustrating how 

observability results are used to optimize tuning and 

dynamic capacity management: 

1. Resource Demand Patterns: Automated observability 
helps track hourly, daily, and other seasonal patterns 

(Figure 1) in resource demand, enabling proactive 
adjustments to server capacity. For example, high-
traffic periods may require additional virtual 
warehouses or increased memory allocation to prevent 
latency issues and meet SLGs. 

2. Performance Bottleneck Identification: 
Observability data allows for the early detection of 
performance bottlenecks, often caused by workload 

spikes, query concurrency, or suboptimal 
configurations. By identifying the applications with the 
highest consumption or failure rates, targeted 
adjustments can be made to configuration and workload 
distribution, aligning resources with actual usage 
demands. 

3. Spillage Monitoring and Management: One of the 
key indicators captured is data spillage—when 
allocated memory is insufficient, causing overflow to 

local or remote storage. Observability data reveals the 
volume of spillage, which defines memory allocation 
adjustments or storage configuration enhancements to 
minimize performance impacts and control associated 
costs. 

4. Real-Time Tuning Opportunities: Automated 
observability also provides real-time insights for tuning 

efforts. By continuously profiling high-cost queries and 
those causing the most frequent anomalies are 
identified as tuning candidates. Tuning efforts are then 
focused on these critical queries to improve efficiency 
and cost-effectiveness. 

Figure 1. Example of seasonality in credit use by one of the 

business applications.   

These observability-driven insights allow for the 

organization of dynamic capacity management, reducing the 

likelihood of unexpected costs or performance degradations. 

By continuously adjusting capacity based on real-time usage 

patterns, we establish a foundation for effective, adaptive 

resource management in complex hybrid multi-cloud 

environments. 

2.1. Focus on Tuning Queries Using the Largest 

Number of Credits 

Our approach begins by identifying the applications with the 

highest cost on each cloud data platform. Then, we narrow 

our focus to the critical queries within these applications, 

which have the longest execution times, as prime candidates 

for tuning. 

Table 1: Credit usage by top 10 Snowflake applications during 

the last month  

This trend is projected to continue, with substantial cost 

increases anticipated in the coming year. The top ten 

business applications in Table 1, account for over 70% of 

total credit usage, indicating a concentrated area for cost 

optimization. 

The observability data further reveals the monthly 

distribution of credit usage across different virtual 

warehouses, providing insights into specific performance 

bottlenecks. Table 2 captures the hash values and 
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performance statistics for the top 30 queries, which are 

prioritized for analysis and tuning based on execution time 

and credit usage. 

Table 2: Top 30 queries by hash values with highest execution 

times (candidates for tuning) 

Database administrators (DBAs) can utilize various tools to 

analyze access paths and identify specific tuning options, 

allowing for a more targeted and efficient tuning process. By 

optimizing these high-cost queries, organizations reduce 

overall credit usage and improve performance for key 

applications, directly impacting the scalability and 

efficiency of their cloud data platforms. 

We also automatically segregate queries into simple, 

medium, and complex categories - each with distinct cost 

and performance profiles. 

For each group we determine the average response time. 
Response time for each group is used as SLG like: 

• Small Group: 8.23 seconds  

• Medium Group: 20.84 seconds  

• Complex Group: 74.97 seconds  

Observability results indicate that simple queries tend to 

cause the most spillage to local storage, while complex 

queries predominantly spill data to remote storage. These 

spillage patterns are factored into our modeling to determine 

each query group's optimal configuration and budget 

allocation. By doing so, we ensure that SLGs are met 

continuously across varying times and days of the month. 

Using these data-driven insights, we can proactively allocate 
resources based on the specific service demands of each 
query group. This approach helps optimize capacity while 
managing costs, as tuning efforts are concentrated on the 
queries that most heavily influence performance and 
expenditure.  

Focusing on the most resource and credit use applications 

and determining tuning recommendations for them 

increases the effectiveness of the cost optimization and 

performance control and complex hybrid multi-cloud 

environment supporting hundreds of applications on 

different cloud data platforms. 

2.2. Focus on tuning queries causing frequent and 

severe cost and performance anomalies 

Machine learning (ML) models detect application 

performance and cost anomalies, flagging applications 

where actual metrics deviate significantly from predicted 

values (Figure 2). 

Figure 2: Frequency and severity of applications performance and 

cost anomalies   

We analyze each detected anomaly's root causes, identifying 

critical SQL statements and the specific database tables 

involved. This analysis allows us to understand the 

underlying factors driving the anomaly, such as inefficient 

query patterns or suboptimal resource allocation, which can 

then be prioritized for tuning. 

By continuously monitoring application performance and 

costs, we can pinpoint the queries responsible for 

performance degradation and cost increases.  

Another contributor to performance issues and cost 

escalation in cloud environments is data spilling. Table 3 

shows an example of 10 top queries for one of the 

applications with the largest number of MB spilled to the 

local storage. 

2.3 Focus on Tuning Queries Generating the 

Largest Data Spill to Local and Remote Storage 

Factors Affecting Data Spillage 

Data spilling to local or remote storage typically results from 

memory limitations during query processing. When a 

query's allocated memory cannot accommodate all 

intermediate data, the system spills it to local storage. 

However, if local storage is insufficient or under high load, 

the system further spills to remote storage to maintain query 

completion. Remote storage is a flexible, cost-effective 

extension, enabling complex queries to proceed even when 

memory resources are stretched. 

Joins and Aggregations: Complex queries with multiple 
joins or aggregations often generate large intermediate 
results that surpass available memory. In these cases, the 

ENVIRONMENT APPLICATION CLASSIFICATION DATABASE HASHVALUE EXECUTIONS 

COUNT

SUM 

ELAPSED 

TIME SEC

AVERAGE 

ELAPSED 

TIME SEC

SUM 

EXECUTION 

TIME SEC

AVERAGE 

EXECUTION 

TIME SEC

SUM MB 

PROCESSED

AVERAGE MB 

PROCESSED

P01 EDL LOAD P01_EDL a10b9ba530daf2ae3b2884679932883b 15 1,457,462 97,164 1,457,400 97,160 21,913,782 1,460,919

P01 EDL LOAD P01_EDL fa44f1ce4d1c24327b5106346d96c42a 15 1,413,483 94,232 1,413,406 94,227 21,902,721 1,460,181

P01 COBWHTSPC LOAD P01_COBWHTSPC 0c8b97d6ac38433810c22fb328f5227b 3 518,403 172,801 518,397 172,799 8,946 2,982

P01 EDL LOAD P01_EDL 6abe18fb17cf3ed65c42b234499cf57b 21 402,538 19,168 402,502 19,167 95,550,978 4,550,047

P01 DX_NCCT LOAD P01_DX 52470da7dcb0637061b8cc6e54e6b078 9 228,436 25,382 228,434 25,382 15,413 1,713

P01 VBC_INB LOAD P01_VBC 13c3476270759437ab40048bac2094c3 4 173,316 43,329 173,314 43,329 6,264 1,566

P01 DADM LOAD P01_DADM c4fd2f41d5a508c785b69981d6305efc 1 172,802 172,802 172,796 172,796 41,567 41,567

P01 PRDA LOAD P01_PRDA db4508ea5a03b2625b6e40594f5fa4aa 4 85,936 21,484 85,913 21,478 3,655,056 913,764

P01 CQDM LOAD P01_CQDM e599e9cafe23ec72e74588d5544c41b2 2 77,890 38,945 77,889 38,945 98,632 49,316

P01 EDM_V3 LOAD P01_EDM_V3 f86096fe3d5583993671d146a11c5ab9 1 76,873 76,873 76,873 76,873 0 0

P01 EDL LOAD P01_EDL e596bae649b6649b6c3602d939a7d09a 1 72,863 72,863 72,863 72,863 126,563 126,563

P01 CDA CD P01_CDA f749fdbbfb15c9d5a213a0b3875bc6db 1 65,599 65,599 65,599 65,599 0 0

P01 HEDIS LOAD P01_HEDIS 343597c7edd80c26b49ea690f63b0947 3 65,190 21,730 65,188 21,729 0 0

P01 EDM_V3 LOAD P01_EDM_V3 06935534d8deaf57486b5df50815ddf0 2 64,166 32,083 64,162 32,081 2,111,648 1,055,824

P01 CDA CD P01_CDA 9800568b9e2d6659df3699ea1fbaed5f 1 63,456 63,456 63,456 63,456 0 0

P01 CQDM LOAD P01_CQDM c2ffb5aea33e24e80822116b6421cc0d 1 62,482 62,482 62,481 62,481 183,991,416 183,991,416

P01 VBSR LOAD P01_VBSR e84c3b115337c175029ca791bb787b4f 1 60,560 60,560 60,560 60,560 365,734 365,734

P01 PIXACO LOAD P01_PIXACO 98224147b51c2a97f00544110453665d 2 59,189 29,595 59,181 29,590 3,223,870 1,611,935

P01 VBC_INB LOAD P01_VBC 7887d4660e7afd1d5d0465f9be6216d7 1 58,516 58,516 58,514 58,514 1,764,412 1,764,412

P01 UWRATE LOAD P01_UWRATE c0c230aa0f86d9282a454039b1af6da1 1 58,495 58,495 58,494 58,494 81,051 81,051

P01 CRCDA CD P01_CDA 89f52c15f380799ed6d2849a6bdaf0a5 2 57,441 28,720 57,440 28,720 0 0

P01 CDA CD P01_CDA 266884d5f8edb31b4aea99ffd3df377e 1 56,586 56,586 56,585 56,585 0 0

P01 EDL LOAD P01_EDL abc78a0552b1f7131c43805e55b9bd34 1 55,920 55,920 55,920 55,920 61,112 61,112

P01 EDL LOAD P01_EDL 83405fb1cb03b5120e890350283ae045 1 54,789 54,789 54,789 54,789 59,858 59,858

P01 PT LOAD P01_PT 71e3b92972cee4f60c1d61834b98a6c3 1 53,794 53,794 53,794 53,794 269,340 269,340

P01 CDA CD P01_CDA eb1107637c5615c444069cd106bb2f2e 1 53,740 53,740 53,740 53,740 0 0

P01 CDA CD P01_CDA 16058501fb6dfebe9b5a2d9e76611b7b 1 53,398 53,398 53,398 53,398 0 0

P01 CDA CD P01_CDA d119fec6692aff0551128a5f197773b0 1 51,995 51,995 51,994 51,994 8,734,360 8,734,360

P01 CREM LOAD P01_CREM 028477f962f94b588b4ff1d5583a2108 1 51,742 51,742 51,741 51,741 185,894 185,894
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system offloads excess data to remote storage to continue 
processing without interruption. 

Table 3. An example of 10 queries for one of the applications 

with the largest number of MB spilled to the local storage  

High Query Concurrency: When multiple queries run 

concurrently during peak usage, memory and local storage 
demands increase sharply. Spilling to remote storage helps. 

Skewed Data Distribution: In distributed systems, data 
partitions across multiple nodes can sometimes become 
unevenly distributed or "skewed." This condition can result 
in some nodes handling disproportionately larger data 
volumes, exhausting local storage and leading to higher spill 
rates on these nodes. 

Insights from Observability Data 

Analyzing observability data provides valuable insights into 

spillage patterns, which often vary by time of day and 

workload. In this example the highest data scan volumes 

tend to occur during nighttime operations (Figure 3). While 

compute clusters allocations are minimal at night (Figure 4) 

and credit usage is at its lowest (Figure 5), this period also 

shows the highest data spillage to local storage (Figure 6), 

with average elapsed times exceeding the SLG threshold of 

75 seconds (Figure 7). 

Resource Requirements to Meet SLGs 

Significant resources may be required to meet SLGs, 

especially for complex query groups with an SLG of 75 

seconds. For example, meeting this SLG often demands up 

to 3,500 GB of RAM and 218 nodes (typically organized as 

seven 2XL clusters), as depicted in Figure 8. 

Proactive Spillage Management 

Excessive spillage is a critical indicator of resource 

constraints or suboptimal query design, leading to degraded 

performance and increased costs. By monitoring spillage 

data, especially for large or complex queries, our 

observability process enables targeted interventions, such as: 

• Memory Optimization: Adjusting memory 
allocations to better match query requirements. 

• Resource Allocation Adjustments: Fine-tuning 
resource distributions to accommodate high-demand 
periods and complex workloads. 

• Query Simplification: Breaking down complex 
queries into smaller tasks, reducing the likelihood of 
spillage. 

Proactive tuning of queries with high spillage rates thus 

enhances system performance, reduces query failure rates, 

and achieves cost savings by optimizing resource utilization. 

 
Figure 3: High data scan volume per query during nighttime 

 
Figure 4: Minimal cluster allocations at night  

Figure 5. Low credit usage during nighttime, with peaks during 

daytime and late evening 
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Figure 6: Maximum data spillage to local storage at night 

Figure 7: SLG breaches due to excessive nighttime spillage 

Figure 8. To meet SLG for the complex group (75 sec), 3,500 GB 

of RAM and 218 nodes (seven 2XL clusters) are needed  

 

2.4 Tuning Queries with the Largest Number of 

Failures 

We analyze SQL query failures for each application by 

examining the frequency of errors, error codes, error 

messages SQL hash values, and the associated lost execution 

time and credits. Additional parameters such as data 

processed and data spilled into local and remote storage, 

elapsed time, execution time, wait time, and throughput per 

application are also evaluated. By aggregating these metrics, 

we gain insights into how the failures contribute to resource 

waste and credit loss across applications. 

Table 4 lists hash values and error codes for ten 

representative queries with the longest failed execution 

times, which guide DBAs in tuning these queries to reduce 

failures. 

By targeting high-failure queries, we enhance overall system 

efficiency, reduce unnecessary cost expenditures, and 

improve application reliability. This tuning process 

mitigates financial waste and optimizes the allocation of 

compute and storage resources, further aligning performance 

with SLGs. 

 

 

 

 

Table 4. Hash values of the critical queries with the largest failed execution time provide value for application developers and DBAs 

 

2.5 Value of Observability Automation 

Automating observability in cloud environments provides 

substantial value for optimizing cost and performance. We 

automate data collection across business applications on 

multiple cloud data platforms, perform workload 

characterization and build detailed performance, resource 

utilization, data usage, and cost profiles on an hourly basis.  

We also automatically detect application performance and 

cost anomalies and generate periodic reports. 

Monthly analyses identify seasonal trends, patterns in 

resource usage, and critical SQL queries. Applying machine 

learning techniques, including regression analysis, 

clustering, and classification, allows us to uncover 

correlations among various factors, highlighting the 
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applications, queries, and databases that substantially impact 

performance and costs. 

In addition, observability automation enables us to 

accurately assess the minimum memory requirements 

necessary to prevent excessive data spillage into local and 

remote storage. By adjusting memory allocations based on 

observed usage patterns, we can reduce the negative impacts 

of spillage on both performance and cost. 

Overall, automating observability significantly enhances the 

effectiveness of tuning efforts by focusing on critical 

performance and cost issues within complex hybrid multi-

cloud environments that host numerous business workloads. 

By understanding the variations in resource demands, 

organizations can optimize resource allocation throughout 

the day, achieving improved cost efficiency and alignment 

with SLGs. This proactive approach allows for more 

efficient performance management and cost control, 

minimizing unexpected financial and operational risks. 

3. Modeling and Optimization 

Our approach employs universal queueing network models 

(QNM) and gradient optimization techniques applicable to 

performance evaluation across different cloud data 

platforms and configurations in a hybrid multi-cloud 

environment. This methodology is designed to identify the 

minimal configurations, tuning strategies, workload 

management adjustments, and budgets necessary to meet 

business SLGs for applications across all platforms. Using 

observability data, we continuously create and calibrate 

hourly models used to evaluate various configuration and 

resource allocation scenarios, providing insights that balance 

cost and performance control. 

The results of our modeling process establish clear 

performance and cost expectations, enabling the 

implementation of a continuous, closed-loop feedback 

control system. This system verifies the outcomes of 

recommended configurations and enables ongoing 

optimization by continuously comparing actual performance 

and costs against predicted benchmarks. 

We evaluated multiple modeling approaches and algorithms, 

including simulation modeling, generative AI, and queueing 

network models. While simulation models offer high 

accuracy, they are time-expensive to build and apply. 

Generative AI models, although promising, require 

extensive training on diverse measurement data that may not 

encompass all scenarios. Therefore, we selected queueing 

network models combined with gradient optimization to 

achieve the desired accuracy and efficiency for continuous 

SLG compliance across applications. 

3.1 Queueing Network Model 

Our approach is distinct in that it integrates analytical QNMs 

[7] into each step of gradient optimization, allowing us to 

find the minimum configuration, workload management and 

cost needed to meet SLGs for each workload. 

To model the hybrid multi-cloud architecture effectively, we 

developed a multi-tier, multi-server QNM, where each 

server is represented by a separate QNM. The output from 

one server serves as the input to another in a cascading 

manner, continuing iteratively until the predicted 

performance metrics stabilize. 

Each server’s QNM comprises multiple nodes representing 

hardware resources, such as compute nodes, storage arrays, 

and interconnecting channels. Workload requests enter these 

queues, waiting for service according to the configuration at 

each node.  

When moving workloads between platforms, we convert 

CPU service time and I/O operation counts to equivalent 

values on the target platform, accounting for differences in 

database management system (DBMS) optimizer efficiency, 

server software, and CPU performance. These conversion 

coefficients are derived from TPC-DS and BEZNext’s 

customized benchmark tests. [24] 

We adapted the Mean Value Analysis (MVA) algorithm [8] 

to model workload management parameters such as 

priorities, concurrency levels, and resource utilization limits. 

The iterative, approximate MVA algorithm allowing queue 

sizes to converge quickly to steady-state values is a more 

efficient approach for complex multi-chain queuing 

networks, where workloads share resources and requests are 

processed concurrently. This approach accommodates 

various service time distributions for processor-sharing 

nodes and exponential distributions for FIFO queues, 

providing a practical approximation of real-world 

computing processes. 

The QNM is calibrated to maintain accuracy by comparing 

predicted and actual measured response times and adjusting 

model parameters accordingly. 

The optimization process aims to identify the server 

configuration that minimizes cost while satisfying SLGs. 

Our two-step optimization algorithm includes: 

1. Redistribution of Existing Resources: In this first 

step, we redistribute resources among workloads by 
setting workload priorities based on each workload’s 
average response time relative to SLGs. This approach 
maximizes resource use within the existing 
configuration. 

2. Resource Allocation Adjustment: If resource 
redistribution alone cannot meet SLGs, the second step 
uses gradient optimization to estimate the additional 

resources required. Conversely, if workloads exceed 
SLGs, the algorithm calculates how much resources can 
be freed, reducing costs without compromising SLG 
adherence. 
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3.2 Gradient Optimization   

Our optimization algorithm [9] begins by evaluating the 

current or proposed hardware configuration. The QNM 

assesses server performance metrics, focusing on the 

average request response time and its components across 

server resources for each workload. These response times 

are then compared with the SLGs to determine the necessary 

configuration adjustments. The ratio of predicted response 

time to the corresponding SLG indicates the configuration 

change’s amplitude, while response time components 

weights provide the direction of optimization. The 

optimization process is illustrated on Figure 9. 

 

Figure 9: BEZNext Queueing Network Modeling and Gradient 

Optimization Process 

The following steps outline the observability, modeling and 

optimization process: 

1. Build Workload Profiles: Compile detailed profiles 
for each business workload, capturing key metrics, 
including cost, performance, resource utilization, and 

data usage for each interval. 

2. Select Representative Time Intervals: Choose time 
intervals that reflect typical workload behaviors and 
patterns, ensuring that the model captures peak and off-
peak conditions. 

3. Modeling and Optimization: Use QNM and gradient 
optimization to determine the minimum configuration 
and workload management adjustments needed to meet 

SLGs for each workload at different times of day and 
throughout the year. 

4. Budget Calculation: Estimate costs for the optimized 
configurations using specific cloud provider pricing 
models, ensuring budget alignment with performance 
requirements. 

5. Provide Performance and Cost Expectations: 
Deliver realistic expectations for performance, resource 
utilization, and cost based on the optimized 

configurations, enabling proactive cost and 
performance management. 

6. Verify results: Compare measurement cost and 
performance with expected 

This process creates a robust framework for modeling and 

optimization, allowing organizations to achieve cost-

effective performance control in complex hybrid multi-

cloud environments. By continuously refining 

configurations and resource allocations, this approach 

supports ongoing FinOps decision optimization, aligning 

operational costs with performance goals while 

accommodating fluctuations in workload demands. 

3.3 Optimization scenarios  

3.3.1 Determine the minimum configuration and budget 

needed to meet SLGs by each business workload 

It includes finding the node types, number of nodes, storage 
configuration, and memory size required during different 
hours of the day, days of the month, and months of the year. 
The results help recommend the most appropriate cloud data 

platform based on performance and cost considerations [10]. 

Figure 10 shows the predicted change of the application’s 
response time components as a result of reducing spilling by 
30%. Predicted response time components help to determine 
the current and potential performance bottlenecks for each 
application on each of the cloud data platforms. They also 
serve as a basis for evaluating options and determining the 
minimum configuration and budget needed to continuously 

meet SGs for each workload. 

 

Figure 10. Predicted response time components 

illustrating the impact of reducing spilling by 30% 

Modeling and optimization are used to address various 

tactical and strategic challenges. For example, during 

capacity management and budget planning for next year, 

modeling helps predict the minimum configuration needed 

to meet SLGs for the expected increase in the number of 

users by 12% per year and data growth of 10% per year. 

As shown in Figures 11 and 12, modeling and optimization 

predict when and what configuration changes will be 

required to continuously meet SLG with the lowest cost. As 

the Snowflake scale-out limit (10 clusters) is reached for 

2XL VW, we recommend scaling up to 3XL and then scaling 

out. 
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Figure 11. The predicted minimum configuration will be sufficient 

to provide the response time below SLG   

Figure 12. Predicted size of the configuration changes needed to 

meet SLGs   

3.3.2 Cloud Migration Decision Optimization 

Models can be used to evaluate and optimize cloud 
migration decisions [11,12].  For example, the data load on-
premises takes nine days. The objective is to determine the 
minimum Snowflake configuration needed to finish the 
load within three days.  

First, we analyze observability results on premises. Figure 

15 shows the differences in CPU utilization during four 
phases of loading data during 9 days. The challenge is to 
determine the minimum configuration, including scaling 
rules needed to parallelize data load and finish it 3 days. 

Figure 13. Change in CPU usage during four phases of data 

loading on-premises before migration to the cloud. 

Table 5. Predicted minimum configuration and budget needed to 

reduce load time to 3 days after migration to the cloud.  

For each phase of the data load, modeling results presented 

in Table 5 determine the minimum Snowflake configuration 

needed to reduce load time from nine to three days. 

After migrating the data load workload to the cloud, we 

compared the actual, measured performance and cost with 

the expected. 

Cost verification 

The number of credits used during 8 months after migrating 

the load workload to the cloud is within 10% of expected 

(Figure 14). Exception is the third month when the load 

process was performed twice.  

 

Figure 14. The actual cost is within 10% of expected 

Performance verification 

 

Figure 15. We expected that the data load will take 3 days, but in 

reality, it takes almost 4 days 

The cost was predicted accurately in this example, but 

additional tuning is needed to meet performance SLGs 

continuously (Figure 15). 

3.3.3 New application sizing 

Measurement data collected during the testing of the new 
applications (Figure 16) are used by modeling and 

optimization to determine the minimum configuration and 
budget needed to meet the SLG of new applications before 
deployment in the cloud [13]. 
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Figure 16. Use measurement data collected during the testing of 

a new application  
The model predicts the impact of expected workloads and 
data growth, identifying the changes required over the next 
12 months (Figure 17). 

Figure 17. The predicted time of change and size of the 

Snowflake configuration are needed to meet SLG for the new 

application after deployment into the cloud. 

3.3.4 Building realistic budget 

Modeling and optimization determine the minimum 
configuration and budget needed to meet SLGs for all 
existing production applications, applications which are 
planned to migrate to the cloud and new applications 
planned for deployment.  Figure 18 shows an example of the 
budget based on determining the minimum configuration 
and workload management and tuning actions needed to 

meet SLGs for all applications.  

Modeling results set realistic cost and performance 
expectations and enable organizing closed loop control. 

Figure 18 An example of a typical challenge while planning next 

year budget to meet SLGs for growing business applications and 

migrating applications from on-premises to the cloud, and for 

newly deployed cloud-based applications. 

4. Performance and Cost Control: Closed-

Loop Feedback System 

Our methodology establishes a closed-loop performance and 

cost control system by comparing actual cost and 

performance metrics with predicted values. This feedback 

loop continuously monitors outcomes to ensure SLGs are 

met across applications (Figure 19). By refining 

configurations based on real-time performance data, this 

system reduces the risks of unexpected costs and 

performance issues, maintaining alignment with SLGs. 

Figure 19: Organization of the closed-loop cost optimization and 

performance control.  

The closed-loop process verifies the effectiveness of 

recommended changes and supports ongoing optimization. 

Organizations can improve resource allocation and reduce 

costs across hybrid multi-cloud environments by applying 

continuous modeling and optimization. 

5. Summary 

In this paper we introduced a comprehensive methodology 
and systems approach for optimizing cost and performance 
control of applications in the Hybrid Multi-Cloud 
environment. 

Observability and some of the modeling and optimization 

functions are automated. BEZNext software can be used as 
SaaS or installed on customer private cloud.  

The main challenge of applying our technology is an 
availability of metrics characterizing applications and 
queries resource usage. We overcome this challenge by 
automatic model calibration. 

The presented case studies illustrate the value and benefits 
of our approach to optimizing application costs and 

controlling performance in complex hybrid multi-cloud 
environments.  Cost savings and performance control are 
achieved by automating the observability process and 
focusing tuning efforts on the most resource-intensive and 
cost-consuming applications, queries, and databases. 

This includes targeting queries and applications with the 
largest volume of data spilled to local and remote storage and 
those with the greatest time lost due to query failures. 

We apply queueing network models and gradient 

optimization to evaluate options and optimize strategic cloud 
decisions by determining the minimum configuration, 
workload management, resource allocation, and budget 
needed to meet SLGs cost-effectively for all applications on 
all cloud data platforms. 

Finally, we provide cost and performance expectations based 
on the modeling results.  It facilitates closed-loop feedback 
cost optimization and performance control, reducing the risk 

of performance surprises in hybrid multi-cloud 
environments.  

The presented case studies cover the benefits of our solutions 
for a wide range of projects, starting with the sizing of new 
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applications before deployment to the cloud, appropriate 
cloud platform selection, optimizing cloud migration 
decisions, and organizing dynamic capacity management 
applications in the Hybrid Multi-Cloud environment.  

We demonstrated in our case study that the difference 

between the measured and predicted costs is within 10%. 

6. Future Work 

The AI Hybrid Multi-Cloud world is expanding rapidly, 
introducing new technologies, platforms, and countless 
options. Cloud decisions must consider not only cost and 
performance, but also storage options, the carbon footprint 
across different platforms, and other relevant factors. As a 

result, organizations face a complex multi- objective 
optimization. 

We will continue to prioritize resource investments based on 
customer requirements and emerging technology trends.  

In particular, we intend to enhance observability automation, 
evaluation of the cloud storage options, improve cost and 
performance recommendations and support multi- objective 
optimization.  

In addition, we plan to reengineer our software by deploying 
specialized AI agents for data collection, workload 
characterization, and continuous comparison of observed 
and expected results.  

We will also strengthen closed-loop feedback control.  

Finally, we intend to expand and improve cost optimization 
and performance control across new cloud data platforms. 
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